Determining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm
Authors
Abstract:
Due to urbanization and changes in the urban thermal environment and since the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. Hence, by identifying these factors, preventing this phenomenon become possible using general education, inserting rules and also retaining efficient management policies and more monitoring to counter the stimulating factors of increasing land surface temperature. The goal of this research is to identify the effective factors on land surface temperature in Tehran. In this regard, a geographically weighted regression (GWR) was used to identify the effective factors and a genetic algorithm (GA) was employed to select the best combination of these factors. The recommended combination method is a suitable method for spatial regression issues, because it is compatible with two unique properties of spatial data, i.e. the spatial autocorrelation and spatial non-stationarity. In this study, land surface temperature data in Tehran was obtained on August 18, 2014 and August 21, 2015 using Landsat 8 satellite imagery, and was used in two methods of Gaussian and Tri-cubic weighting in GWR. The values of 1-R2 by using the Gaussian kernel were equal to 0.21752 and 0.23448, as well as by using the the Tri-cubic kernel were equal to 0.10452 and 0.14494 for August 18, 2014 and August 21, 2015, respectively. The results showed that the effects of factors such as land use, construction density, and distance from roads on land surface temperature in Tehran were more than other factors. Also, using the tri-cubic kernel for GWR provided more accurate results.
similar resources
Estimating Land Surface Temperature in the Central Part of Isfahan Province Based on Landsat-8 Data Using Split- Window Algorithm
Land surface temperature (LST) is used as one of the key sources to study land surface processes such as evapotranspiration, development of indexes, air temperature modeling and climate change. Remote sensing data offer the possibility of estimating LST all over the world with high temporal and spatial resolution. Landsat-8, which has two thermal infrared channels, provides an opportunity for t...
full textDetermining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran
Determining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran Pahlavani, P., Assistant professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran Raei, A., PhD Candidate of GIS at School of Surveying and Geospatial Engineering, College of Engineeri...
full textDetermining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran
Determining Effective Factors on Forest Fire Using the Compound of Multivariate Adaptive Regression Spline and Genetic Algorithm, a Case Study: Golestan, Iran Pahlavani, P., Assistant professor at School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran Raei, A., PhD Candidate of GIS at School of Surveying and Geospatial Engineering, College of Engineeri...
full textLand Surface Temperature from Landsat 5 TM images: comparison of different methods using airborne thermal data
In this study, several methods to compute land surface temperatures (LST) from Landsat TM5 data are compared. Two different approaches are considered. An image based approach that takes into account atmospherically corrected data by using a dark object subtraction model (DOS-1) and computes the emissivity as NDVI function. The emissivity of a surface is controlled by such factors as water conte...
full textLand Surface Temperature Retrieval from MODIS Data by Integrating Regression Models and the Genetic Algorithm in an Arid Region
The land surface temperature (LST) is one of the most important parameters of surface-atmosphere interactions. Methods for retrieving LSTs from satellite remote sensing data are beneficial for modeling hydrological, ecological, agricultural and meteorological processes on Earth’s surface. Many split-window (SW) algorithms, which can be applied to satellite sensors with two adjacent thermal chan...
full textLand Surface Temperature Retrieval from LANDSAT data using Emissivity Estimation
Land surface temperature (LST) is an essential factor in many areas like global climate change studies, urban land use/land cover, geo-/biophysical and also a key input for climate models. LANDSAT 8, the latest satellite from LANDSAT series, has given lot of possibilities to study the land processes using remote sensing. In this study an attempt has been made to estimate LST over Chittoor distr...
full textMy Resources
Journal title
volume 7 issue 3
pages 79- 102
publication date 2019-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023